
Lecture 8

Compression beyond iid data

EE 274: Data Compression - Lecture 8 1



Recap

Huffman, Arithmetic, ANS

We know how to achieve the entropy in a computationally efficient manner.

EE 274: Data Compression - Lecture 8 2



$ cat sherlock.txt 
    ... 
      In mere size and strength it was a terrible creature which was 
      lying stretched before us. It was not a pure bloodhound and it 
      was not a pure mastiff; but it appeared to be a combination of 
      the two—gaunt, savage, and as large as a small lioness. Even now 
      in the stillness of death, the huge jaws seemed to be dripping 
      with a bluish flame and the small, deep-set, cruel eyes were 
      ringed with fire. I placed my hand upon the glowing muzzle, and 
      as I held them up my own fingers smouldered and gleamed in the 
      darkness. 

      “Phosphorus,” I said. 

      “A cunning preparation of it,” said Holmes, sniffing at the dead 
    ... 

Let's try and compress this 387 KB book.

EE 274: Data Compression - Lecture 8 3



>>> from core.data_block import DataBlock 
>>>  
>>> with open("sherlock.txt") as f: 
>>>     data = f.read() 
>>>  
>>> print(DataBlock(data).get_entropy()*len(data)/8, "bytes") 

199833 bytes 

$ gzip < sherlock.txt | wc -c 
134718 

$ bzip2 < sherlock.txt | wc -c 
99679 

EE 274: Data Compression - Lecture 8 4



What's up? What are we missing here? Any suggestions?

EE 274: Data Compression - Lecture 8 5



�. Data is not iid.

�. Maybe the entire file doesn't have the same distribution (think concatenating an
English novel with a Hindi novel).

EE 274: Data Compression - Lecture 8 6



In the next few lectures, we will discuss methods to compress real-life data, attempting to
handle non-iid data whose distribution we do not know a priori.

EE 274: Data Compression - Lecture 8 7



Beyond iid data

text

images

video

tables

basically anything in real life

EE 274: Data Compression - Lecture 8 8



Probability recap

Recall for :

for iid

in general

U =n (U  , … ,U  )1 n

P (U ) =n Π  P (U  )i=1
n

i

P (U ) =n Π  P (U  ∣U ) =i=1
n

i
i−1 Π  P (U  ∣U  , … ,U  )i=1

n
i 1 i−1

EE 274: Data Compression - Lecture 8 9



Stochastic process (aka random process)

Given alphabet , a stochastic process  can have arbitrary dependence

across the elements and is characterized by:

 for  and 

.

Way too general to be of much use.

U (U ,U  , … )1 2

P ((U  ,U  , … ,U  ) =1 2 n (u  ,u  , … ,u  ))1 2 n n = 1, 2, … (u  ,u  , … ,u  ) ∈1 2 n

Un

EE 274: Data Compression - Lecture 8 10



Stationary stochastic process

Definition: Stationary Process

A stationary process is a stochastic process that is time-invariant, i.e., the probability
distribution doesn't change with time (here time refers to the index in the sequence).

More precisely, we have

P (U  =1 u  ,U  =1 2 u  , … ,U =2 n u  ) =n P (U  =l+1 u  ,U  =1 l+2 u  , … ,U  =2 l+n u  )n

for every , every shift  and all .

Mean, variance etc. do not change with .

Can still have arbitrary time dependence.

n l (u  ,u  , … ,u  ) ∈1 2 n Un

n

EE 274: Data Compression - Lecture 8 11



Examples

IID sequences: e.g., sequence of fair iid coin tosses

EE 274: Data Compression - Lecture 8 12



Examples: Stationary time-invariant Markov processes

U  ∼1 Unif({0, 1, 2})

U  =i+1 (U  +i Z  ) mod 3i

Z  ∼i Ber  (
2
1 )

Transition matrix 
   U_{i+1} 0   1   2 
U_i  
0         0.5 0.5 0.0 
1         0.0 0.5 0.5  
2         0.5 0.0 0.5 

EE 274: Data Compression - Lecture 8 13



Examples: Stationary time-invariant Markov processes

Question: Can you convert this to an iid sequence?

All the iid compression work still useful!

EE 274: Data Compression - Lecture 8 14



th order Markov source

Definition: th order Markov source

A th order Markov source is defined by the condition

P (U  ∣U  U  … ) =n n−1 n−2 P (U  ∣U  U  …U  )n n−1 n−2 n−k

for every . In words, the conditional probability of  given the entire past depends

only on the past  symbols.

Most practical stationary sources can be approximated well with a finite memory th order

Markov source with higher values of  typically providing a better approximation (with

diminishing returns).

k

k

k

n U  n

k

k

k

EE 274: Data Compression - Lecture 8 15



Non-example

Arrival times for buses at a bus stop: 

4�16 pm, 4�28 pm, 4�46 pm, 5�02 pm

Question 1: Is this stationary?

Question 2: Can you convert this to a stationary (in fact iid) process?

U  ,U  ,U  ,U  , …1 2 3 4

EE 274: Data Compression - Lecture 8 16



Information-theoretic quantities for non-iid random variables

EE 274: Data Compression - Lecture 8 17



Conditional entropy

The conditional entropy of  given  is defined as

H(U ∣V ) ≜ E log  [
P (U ∣V )

1 ]
Can also write this as

H(U ∣V ) =  P (u, v) log  

u∈U ,v∈V

∑
P (u∣v)

1

=  P (v)  P (u∣v) log  

v∈V

∑
u∈U

∑
P (u∣v)

1

=  P (v)H(U ∣V = v)
v∈V

∑

U V

EE 274: Data Compression - Lecture 8 18



Properties of conditional entropy

�. Conditioning reduces entropy:  with equality iff  and  are

independent.

H(U ∣V ) ≤ H(U) U V

EE 274: Data Compression - Lecture 8 19



Properties of conditional entropy

�. Conditioning reduces entropy:  with equality iff  and  are

independent.

�. Chain rule of entropy:

H(U ,V ) = H(U) + H(V ∣U) = H(V ) + H(U ∣V )

H(U ∣V ) ≤ H(U) U V

EE 274: Data Compression - Lecture 8 20



Properties of conditional entropy

�. Conditioning reduces entropy:  with equality iff  and  are

independent.

�. Chain rule of entropy:

H(U ,V ) = H(U) + H(V ∣U) = H(V ) + H(U ∣V )

�. Joint entropy vs. sum of entropies:

H(U ,V ) ≤ H(U) + H(V )

with equality holding iff  and  are independent.

H(U ∣V ) ≤ H(U) U V

U V

EE 274: Data Compression - Lecture 8 21



Properties of conditional entropy

�. Conditioning reduces entropy:  with equality iff  and  are

independent.

�. Chain rule of entropy:

H(U ,V ) = H(U) + H(V ∣U) = H(V ) + H(U ∣V )

�. Joint entropy vs. sum of entropies:

H(U ,V ) ≤ H(U) + H(V )

with equality holding iff  and  are independent.

Can generalize to conditioning  on :

H(U  ∣U  ,U  , … ,U  )n+1 1 2 n

H(U ∣V ) ≤ H(U) U V

U V

U  n+1 (U  ,U  , … ,U  )1 2 n

EE 274: Data Compression - Lecture 8 22



Entropy rate

Before we look at examples, let's think about how we can generalize entropy for stationary
processes. Some desired criteria:

works for arbitrarily long dependency so  for any finite 

won't do

has operational meaning in compression just like entropy

is well-defined for any stationary process

H(U  ∣U  ,U  , … ,U  )n+1 1 2 n n

EE 274: Data Compression - Lecture 8 23



Entropy rate

Not only one, but two equivalent ways of defining it!

EE 274: Data Compression - Lecture 8 24



Entropy rate

H  (U) =1  H(U  ∣U  ,U  , … ,U  )
n→∞
lim n+1 1 2 n

H  (U) =2   

n→∞
lim

n

H(U  ,U  , … ,U  )1 2 n

C&T Thm 4.2.1

For a stationary stochastic process, the two limits above are equal. We represent the

limit as  (entropy rate of the process, also denoted as ).H(U) H(U)

EE 274: Data Compression - Lecture 8 25



Examples

Fair coin toss

Markov example

EE 274: Data Compression - Lecture 8 26



Example: entropy rate of English text

Source: http://reeves.ee.duke.edu/information_theory/lecture4-Entropy_Rates.pdf
EE 274: Data Compression - Lecture 8 27

http://reeves.ee.duke.edu/information_theory/lecture4-Entropy_Rates.pdf


AEP again!

Shannon–McMillan–Breiman theorem

−  log  P (U  ,U  , … ,U  ) →
n

1
2 1 2 n H(U) a.s.

under technical conditions (ergodicity).

Takeaway: entropy rate is the best compression you can hope to achieve.

EE 274: Data Compression - Lecture 8 28



How to achieve the entropy rate?

Today: we start small, try to achieve th order entropy .

Next week: achieving entropy rate for arbitrary stationary distributions (in theory) and
a really performant scheme (in practice). 

k H(U  ∣U  , … ,U  )k+1 1 k

EE 274: Data Compression - Lecture 8 29



Working with known 1st order Markov source

Suppose we know .

How would you go about compressing a block of length  using

E log   ≈[ 2 P (U  , … ,U  )1 n

1 ] nH(U  ∣U  )2 1

bits?

P (U  ∣U  )2 1

n

EE 274: Data Compression - Lecture 8 30



Working with known 1st order Markov source

Idea 1: Use Huffman on blocks of length .

Usual concerns: big block size, complexity, etc.

For non-iid sources, working on independent symbols is just plain suboptimal even
discounting the effects of non-dyadic distributions.

Exercise: Compute  and  for

U  ∼1 Unif({0, 1, 2})

U  =i+1 (U  +i Z  ) mod 3i

Z  ∼i Ber  (
2
1 )

and compare to .

n

H(U  )1 H(U  ,U  )1 2

H(U)
EE 274: Data Compression - Lecture 8 31



Working with known 1st order Markov source

Question: Can you explain the general idea?

EE 274: Data Compression - Lecture 8 32



Working with known 1st order Markov source

Question: Can you explain the general idea?
Answer: At every step, split interval by  [more generally by 

].

P (−∣u  )i−1

P (−∣entire past)
EE 274: Data Compression - Lecture 8 33



Arithmetic coding for known 1st order Markov source

Length of interval after encoding 

Bits for encoding ~ 

Expected bits per symbol

∼  E log   

n

1 [ 2 P (U  )P (U  ∣U  ) …P (U  ∣U  )1 2 1 n n−1

1 ]
=  E log   +   E log   

n

1 [ 2 P (U  )1

1 ]
n

1

i=2

∑
n

[ 2 P (U  ∣U  )i i−1

1 ]
=  H(U  ) +  H(U  ∣U  )

n

1
1

n

n − 1
2 1

∼ H(U  ∣U  )2 1

u  ,u  ,u  , … ,u  =1 2 3 n

P (u  )P (u  ∣u  ) …P (u  ∣u  )1 2 1 n n−1

log   2 P (u  )P (u  ∣u  )…P (u  ∣u )1 2 1 n n−1

1

EE 274: Data Compression - Lecture 8 34



Context-based arithmetic coding

Total bits for encoding:

 log  

i=1

∑
n

2 (u  ∣u  , … ,u  )P̂ i 1 i−1

1

Question: How would the decoding work?

EE 274: Data Compression - Lecture 8 35



Context-based arithmetic coding

Total bits for encoding:

 log  

i=1

∑
n

2 (u  ∣u  , … ,u  )P̂ i 1 i−1

1

Question: How would the decoding work?

Answer: Decoder uses same model, at step  it has access to  already

decoded and so can generate the  for the arithmetic coding step!

i u  , … ,u  1 i−1

P̂
EE 274: Data Compression - Lecture 8 36



Context-based arithmetic coding

Question: I don't already have a model. What should I do?

EE 274: Data Compression - Lecture 8 37



Context-based arithmetic coding

Question: I don't already have a model? What should I do?

Option 1: Two pass: first build ("train") model from data, then encode using it.

Option 2: Adaptive: build ("train") model from data as we see it (more on this shortly).

EE 274: Data Compression - Lecture 8 38



Two-pass vs. adaptive

Two-pass approach

 learn model from entire data, leading to potentially better compression

 more suited for parallelization
 need to store model in compressed file

 need two passes over data, not suitable for streaming
 might not work well with changing statistics

Adaptive approach

 no need to store the model
 suitable for streaming

 adaptively learning model leads to inefficiency for initial samples
 works pretty well in practice!

EE 274: Data Compression - Lecture 8 39



Adaptive context-based arithmetic coding

 Important for encoder and decoder to share exactly the same model state at every step

(including at initialization).

 Don't go about updating model with  before you perform the encoding for .

 Try not to provide  probability to any symbol.

u  i u  i

0

EE 274: Data Compression - Lecture 8 40



Compression and prediction

Cross-entropy loss for prediction (classes , predicted probabilities , ground truth class: 
):

 1  log  

c∈C

∑ y  =ci 2
(c∣y  , … , y  )P̂ 1 i−1

1

Loss incurred when ground truth is  is 

Exactly matches the number of bits used for encoding with arithmetic coding!

C P̂

y

y  i log   2 (y  ∣y  ,…,y  )P̂ i 1 i−1

1

EE 274: Data Compression - Lecture 8 41



Compression and prediction

Good prediction => Good compression

Compression = having a good model for the data

Need not always explicitly model the data

EE 274: Data Compression - Lecture 8 42



Compression and prediction

Each compressor induces a predictor!

Recall relation between code length and induced probability model 

Generalizes to prediction setting

Explicitly obtaining the prediction probabilities easier with some compressors than
others

p ∼ 2−l

EE 274: Data Compression - Lecture 8 43



Compression and prediction

Each compressor induces a predictor!

Recall relation between code length and induced probability model 

Generalizes to prediction setting

Explicitly obtaining the prediction probabilities easier with some compressors than
others

p ∼ 2−l

EE 274: Data Compression - Lecture 8 44



Prediction models used for compression

EE 274: Data Compression - Lecture 8 45



th order adaptive arithmetic coding

    def freqs_current(self): 
        """Calculate the current freqs. We use the past k symbols to pick out 
        the corresponding frequencies for the (k+1)th. 
        """ 
            freqs_given_context = np.ravel(self.freqs_kplus1_tuple[tuple(self.past_k)]) 

    def update_model(self, s): 
        """function to update the probability model. This basically involves update the count 
        for the most recently seen (k+1) tuple. 

        Args: 
            s (Symbol): the next symbol 
        """ 
        # updates the model based on the new symbol 
        # index self.freqs_kplus1_tuple using (past_k, s) [need to map s to index] 
        self.freqs_kplus1_tuple[(*self.past_k, s)] += 1 

        self.past_k = self.past_k[1:] + [s]] 

k

EE 274: Data Compression - Lecture 8 46



th order adaptive arithmetic coding

On sherlock.txt :

>>> with open("sherlock.txt") as f: 
>>>     data = f.read() 
>>>  
>>> data_block = DataBlock(data) 
>>> alphabet = list(data_block.get_alphabet()) 
>>> model_params = (alphabet, order) 
>>> encoder = ArithmeticEncoder(AECParams(), model_params, AdaptiveOrderKFreqModel) 
>>> encoded_bitarray = encoder.encode_block(data_block) 

k

EE 274: Data Compression - Lecture 8 47



th order adaptive arithmetic coding

Compressor bits/char

th order 4.12

st order 3.34

nd order 2.85

rd order 3.09

gzip 2.78

bzip2 2.06

k

0

1

2

3

EE 274: Data Compression - Lecture 8 48



th order adaptive arithmetic coding

Compressor bits/char

th order 4.12

st order 3.34

nd order 2.85

rd order 3.09

gzip 2.78

bzip2 2.06

Question: Why is order 3 doing worse than order 2?

k

0

1

2

3

EE 274: Data Compression - Lecture 8 49



th order adaptive arithmetic coding

Limitations

slow, complexity grows exponentially in 

counts become very sparse for large , leading to worse performance

unable to exploit similarities in prediction for similar contexts

Some of these can be overcome with smarter modeling as discussed next.

Note: Despite their performance limitations, context based models are still employed as
the entropy coding stage after suitably preprocessing the data (LZ, BWT, etc.).

k

k

k

EE 274: Data Compression - Lecture 8 50



Prediction models used for compression

th order adaptive (in SCL):

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compres
sors/probability_models.py

Bit-level models

Context Tree Weighting (CTW)

Prediction by Partial Matching (PPM)

Neural net based: NNCP, Tensorflow-compress, DZip

Ensemble methods: CMIX

These are some of the most powerful compressors around, but often too slow to use in
practice!

k

EE 274: Data Compression - Lecture 8 51

https://github.com/kedartatwawadi/stanford_compression_library/blob/main/compressors/probability_models.py
https://ieeexplore.ieee.org/document/382012
https://en.wikipedia.org/wiki/Prediction_by_partial_matching
https://bellard.org/nncp/
https://github.com/byronknoll/tensorflow-compress
https://arxiv.org/abs/1911.03572
https://www.byronknoll.com/cmix.html


DeepZip framework

EE 274: Data Compression - Lecture 8 52



CMIX context mixing

EE 274: Data Compression - Lecture 8 53



Text compression over the years

EE 274: Data Compression - Lecture 8 54



Next week

Lempel-Ziv algorithms - the most widely used algorithms in practice!

EE 274: Data Compression - Lecture 8 55


